
www.manaraa.com

The Design of an Object-Role Database Management SystemRaymond K. Wong� H. Lewis Chau� Frederick H. LochovskyDepartment of Computer ScienceHong Kong University of Science & TechnologyClear Water Bay, Hong Kongfwongkk,lewis,fredg@cs.ust.hk
Number: 165

AbstractIn many class-based object-oriented database systems the association between an instance and aclass is both exclusive and permanent. Therefore, these systems have serious di�culties in representingobjects taking on di�erent and multiple roles over time. Recently, some researchers have proposed theuse of roles to tackle these problems. In their approaches, objects acquire additional properties bydynamically playing roles. However, relationships between objects and roles have not been addressed.Therefore, an object may evolve on its own by dynamic acquiring new roles, without coordination orcooperation by any other objects.In this paper, a novel object-oriented database management system, called DOOR, which supportsobject evolution, dynamic role (context-dependent) modeling, objects of multiple speci�c classes, andobject-role relationships, is described. In DOOR, a role is an entity with state and behavior, but doesnot have globally unique identity. Therefore, its existence has to be associated with an object. Itacts as a special association between its owner and player, such that its owner can prescribes its stateand its player gains its properties through dynamic role playing. In this way, an object can evolvedynamically and cooperatively according to its associating objects. Furthermore we discuss someinteresting features of roles which have been seldom addressed. They include playing multiple rolesof the same type, player change (or role migration), role ownership and playership, and player-classconstraint, etc. We show by examples that all these features are very useful for applications in whichobjects take on di�erent and multiple roles over time.�Part of this work has been done when the authors are visiting the Computer Science Department at UCLA.1

www.manaraa.com

1. IntroductionMost object-oriented data models are based on the notion of class. In these models, real-world entitiesare represented as instances of the most speci�c class1. In reality, however, objects often belong toseveral most speci�c classes. For example, a person John might play multiple roles at time t0. Hemay be a graduate student, a teaching assistant and research assistant, a club-member and chairmanat the same time, as shown in Figure 1. Thus, the object representing this person does not have a
t0

Person

EmployeeGradStudent

ClubMember

ClubChairman

ResearchAssistant

TeachingAssistant

time tFigure 1: A possible evolution of object John.unique most speci�c class, but rather has a set of most speci�c classes. Although this situation can beeasily represented in a model with multiple inheritance by de�ning a subclass of all the involved classes,this solution may lead to a combinatorial explosion of arti�cial subclasses. Another shortcoming of themultiple inheritance approach is that it provides only a single behavioral context for an object [14].Moreover, in the conventional class-based object-oriented approach, the association between aninstance and a class is exclusive and permanent. Therefore, this approach is appropriate only if theentities to be modeled can be partitioned into a set of disjoint classes and never change their class. Theproblem is even more cumbersome if an entity can take on several roles simultaneously. However, manyreal-world applications are dynamic and encompass entities that evolve over time. Person entities givethe most illustrative example. A person may take on di�erent roles at di�erent times. He/she maybecome a student, a club member, and then an alumni, an employee, and so forth. But a person is notthe only kind of entity which evolves over time; so does an o�ce document or a product in a productionline, etc.1An object o can belong to a set of classes S . We call an element of S that has no subclass in S a most speci�c classof object o. 2

www.manaraa.com

Recently, some researchers have proposed extending object models to incorporate the concept of rolesto tackle these problems in various application domains. These include o�ce modeling [13], semanticmodeling [14, 16], object-oriented modeling [12], manufacturing system modeling [22], and multimediaapplications [21]. In these approaches, a role extends an existing object with additional state andbehavior. An object may have many roles that come and go over time. Rather than being an instanceof some unique subclass de�ned through multiple inheritance, an object simply is an instance of manytypes by virtue of having many roles. Every object reference is to a particular role, and the behavior ofthe object depends on which role is being referenced.The restriction that an object be associated with a single, most-speci�c type in the database contextwas �rst relaxed in Iris [4]. Iris allows an object to belong to several types. But it misses the possibilityof role-speci�c / content-dependent behavior, i.e., the entire set of types an object belongs to is visiblein every context. Hence two roles of an object may not have di�erent methods of the same name.Afterwards, the importance and support of multiple perspective/context-dependent behavior of objectswere described in multiple views [17], ORM [13], and Aspects [14]. However, in these approaches, rolesare not classi�ed and encapsulated as classes and there is no inheritance or delegation de�ned betweenroles. Hence, role sharing among di�erent classes is impossible. Moreover, no explicit operators forswitching between roles were de�ned. Sciore's work [16] allows classes to be viewed as an individualobject's auxiliary roles or perspectives, and objects to de�ne their own inheritance paths. However, thisapproach is biased towards the prototyped-based approach and is more appropriate for experimentalphases of system development, as opposed to database design. A similar idea was proposed by Schreand Neuhold in [15], except this approach towards class-based instead of prototype-based, that possibleobject hierarchies must be prede�ned by role specialization classes at the type level.The most recent languages which support roles include a new, strongly-typed database languagecalled Fibonacci [1, 2] and a Smalltalk-based role extension to objects [5]. In Fibonacci, an objectsimply consists of an identity and an acyclic graph of roles. Each role can be dynamically added ordropped. Objects are de�ned in classes and roles are de�ned separately and form a di�erent hierarchy.Alternatively, Gottlob et al. [5] demonstrated the extension of Smalltalk for incorporating roles andemphasized the way to extend an existing language to support roles. Moreover, di�erent from Fibonacci,they included multiple instantiation of roles, and the integration of class and role hierarchies. To some3

www.manaraa.com

extent, both Fibonacci and Gottlob's work are similar to ORM in the sense that roles are also rootedin (though not encapsulated in) a class. Di�erent from ORM, aspects, and views, however, the rolesattached to a class in both approaches can form their own is-a hierarchy. However, relationships betweenobjects and roles have not been addressed in all these work. Therefore, an object may evolve on itsown by dynamic acquiring new roles, without coordination or cooperation by any other objects. Forexample, a person object may gain a manager role and initialize its state on its own. Although acompany object/name may be referenced by one of its attributes, the ownership information of the roleis missing. That is, if that person later resigns the job, should the properties of the manager still persistand be ready for the new person who �lls the vacancy? More naturally and reasonably, the detailedproperties and initial state of a manager role should be prescribed by his/her company (the role owner)and gained by the one (the role player) who plays this role.This paper presents an object-role database system called DOOR, whose goal is to provide gen-eralized role support for dynamic and evolving applications. DOOR is based on an object-with-rolemodel. All real-world entities are classi�ed as either object classes or role classes. Their instances arecalled objects and roles respectively. A role extends an existing object with additional state and behav-ior while sharing the same object identity. Therefore, its existence has to be associated (by means ofplayed-by and owned-by relationships to be described) with objects. In particular, DOOR supports theoperations for dynamic role playing and context-dependent behavioral modeling. Since an object canplay multiple roles and acquire them at the instance level, instantiation of multiple speci�c role classesare supported such that the association between an instance and its role classes are neither exclusive norpermanent. Most importantly, we emphasize the relationships between roles and objects, as well as thepersistent and transient properties of objects. In DOOR, a role acts as a special association between itsowner and player, such that its owner can prescribes its state and its player gains its properties throughdynamic role playing. In this way, an object can evolve dynamically and cooperatively according to itsassociating objects. Furthermore we discuss some interesting features of roles which have been seldomaddressed. They include playing multiple roles of the same type, player change (or role migration), roleownership and playership, and player-class constraint, etc. We show by examples that all these featuresare very useful for applications in which objects take on di�erent and multiple roles over time.The organization of the rest of this paper is as follows. Section 2 reviews the data model briey and4

www.manaraa.com

presents a fragment of a university database as an example to be used throughout the paper. Section3 introduces the basic programming and query constructs of DOOR. In Section 4, important issuessuch as an object with multiple most speci�c types, multiple roles of the same type, context-dependentbehavior, and polymorphism of roles are discussed. These properties are supported by various facilitiesin DOOR which include path expressions, attribute name conict resolution, di�erent method lookupschemes, generic comparison operators, and di�erent levels of constraints. Section 5 describes thedi�erent relationships (mainly playership and ownership) between objects and roles. Object evolutionbased on these relationships is presented. Finally Section 6 concludes the paper.2. An Object-Role Data Model2.1. Informal OverviewWe briey review the object-role data model formally de�ned in [19, 20]. The model extends a typicalobject-oriented data model (e.g. [7, 10]) with the notion of roles.Object and role representation: Objects consist of both object state (in terms of the values ofattributes), methods, and a set of dynamically changing roles. They are referred to via theirlogical object ids (oid) and any oid uniquely identi�es an object. Oids may carry certain semanticinformation. For instance, we consider `20' to be the oid of the abstract object with the usualproperties of the number 20. The object state is encapsulated and can only be queried and updatedby sending messages to the object. An object is internally organized as an acyclic graph with theroot being the object itself, and all the other nodes being roles. The parent node of any node Ain the graph is called the player (or role player) of A, and A is said to be played-by its player. Arole is also an entry to access the object it belongs to: an object can be accessed through itself(we consider the object itself as a base role) or one of its roles, and its behavior depends on thisrole. On the other hand, roles encapsulate both state and behavior, but do not have a persistent,globally unique identity. A role can be itself a player and include other roles being played.Attributes and methods: Objects are described via attributes, and all our objects are tuple-objects,whose �elds are the values of the object's attributes. If the attribute is single-valued, then thevalue is a single oid; if the attribute is set-valued, then the value is a set of oids. Since DOOR isstrongly typed, a type signature needs to be assigned to each attribute in a class de�nition. If the5

www.manaraa.com

signature is an object type, the attribute value must be of that type or any subtype of that type.If the signature is a role type, then the value must be an object which is playing a role of thattype or of a subtype of that type. Moreover, an object/a role X can own a role R such that Rbecomes part of the properties of X . Another object can share these properties by playing R. Asa result, R bridges the relationships between its owner and its player. This issue will be discussedextensively in the section on object-role relationship modeling. A method, invoked in the scope ofan object (or a role) on a tuple of arguments, returns an answer, and, possibly, changes the stateof that object (e.g., by changing the value of an attribute). As a function, each method has anarity { the number of its arguments. An attribute is regarded as a 0-ary method.Object class and role class: Object classes have the function of organizing the persistent propertiesof objects into sets of related entities, while role classes organize their transient properties. Theinstance-of relationship between objects (or roles) and classes determines which objects (or roles)belong to which classes. The IS-A or subclass relationship, is de�ned between classes and is acyclic.If a class C is a subclass of another class C 0, then all instances of C must also belong to C 0. Aplayer-class constraint can be optionally de�ned in the role class, to limit the possible player typesof a role. If it is omitted, a player of any type is assumed. The player-class constraint is used tosupport the type-safe implementation of the methods in roles, as it may call methods in a roleplayer. Besides the player-class constraint, other general constraints can be de�ned in the class-level and/or instance-level to model the fact that not every object is quali�ed to play a particularrole. Similar to the other properties of a class, the player-class constraint of a class will be inheritedby all its subclasses.Types: The type of a class C is determined by the types of its methods, described as a signature ofthe form Meth : Arg1; : : : ; Argn ! Result, or Meth : Arg1; : : : ; Argn !! Result, for single-valued or set-valued methods, respectively. The signature is attached to the de�nition of class C,where Argi and Result are class names, and means that when arguments that are instances ofclasses Arg1; : : : ; Argn, respectively, are passed to the method Meth, the result is expected to bean instance, or a set of instances, of the class Result, depending on whether Meth is single- orset-valued, respectively. Note that there are actually n + 1 (rather than n) arguments, where the0th argument is not mentioned, because it is the object of class C for which the signature is de�ned.6

www.manaraa.com

A method can have several signatures, each constraining the behavior of the method on di�erentsets of arguments. When this is the case, the method is said to have a polymorphic type. Thesignature of a method can include role types. If a role type is included in the method signature,the corresponding object must be playing such a role and will be treated context-dependently fromthat perspective. Otherwise, a type violation is caused. The type of an object is more complicatedand its formal description is beyond the scope of this paper. Informally, an object type consists ofa static component, i.e., the type of its object class, and a dynamic component, i.e., the types ofthe roles being played.Inheritance and delegation: Methods, and the player-class constraints if there are any, de�ned inthe scope of a class C are inherited by the subclasses of C through the is-a relationship. If thereare di�erent player-class constraints de�ned in a subclass, a most speci�c class will override arelatively more general one until all of them are disjoint. Inheritance is not de�ned for the played-by relationship. Instead, the automatic delegation between roles and their corresponding playersis used. For example, suppose we model an employee e as a role of a person p, and sex is anattribute of person but not of employee. Then sex(e) would be a type error. We can correct thiserror by delegating the evaluation of sex to played-by(e) [11]. This amounts to replacing sex(e) bysex(played-by(e)).2.2. Example: A University DatabaseIn this subsection, a schema for a university database is used to illustrate the above object-role datamodel.About the university: There are several departments in the university. Each department has manyundergraduates, graduate students, teaching assistants (TA), research assistants (RA), faculty,administrative sta� (AdminSta�), and a department head (DeptHead). All TAs, RAs, faculty,and of course AdminSta� are regarded as university employees. A DeptHead may be employeddirectly from outside, or elected from the existing faculty, and he/she has to perform also the dutiesof a faculty member (which include teaching and research). Each faculty may be involved in morethan one research project. They can hire graduate students, or some outstanding undergraduates,to work as RAs for the projects. Each project may have one or more than one project-leader(s).7

www.manaraa.com

A project-leader is himself/herself a faculty or a RA. Di�erent from being a RA, only graduatestudents can be employed as TAs, to tutor the undergraduates. Moreover, there are some interestclubs for students, faculty and even o�-campus people (but they need to pay a higher membershipfee) to join. Each club has at least one chairman. As usual, in order to be a chairman, he/sheneeds to be a member beforehand.

TA

Student
Grad-

Member

Club-
RA

Club-

john

The Key

X

X

an object

Chairman

a role class (with classname in italic)

(b)
is-a relationship

played-by relationship

Employee

Teaching
Staff

a role

Research
Staff

TA RAgraduate
Under-

Student

Student
Grad-

DeptHead
sec : Secretary

dob : date
name : string
id# : integer

Person

an object class (with classname in bold)

(a)

Member
Club-

Club-
Chairman

id# : integer
salary : real
dept : Department

is-a
is-a

is-a

played-by

Faculty

AdminStaff
id# : integer

Leader
Project-

played-by

id# : integer

duration : integer
year : integer

year : integer

dob
name
id#

id#
year

id#
salary

id#

salary

id#Figure 2: (a) An object-role database schema. (b) Internal organization of an object { a person johnwho is playing multiple roles: GradStudent (graduate student), TA (teaching assistant), RA (researchassistant), ClubMember and ClubChairman.About the schema: Figure 2(a) shows the corresponding database schema. For simplicity, attributionand composition are not shown. The schema is similar to an traditional object-oriented databaseschema extended with the played-by relationship which speci�es the player-class constraint. Inher-itance is de�ned along each is-a relationship, from a class to its subclasses. Apart from attributesand methods, the player-class constraints of a role class will also be inherited to all its subclasses.8

www.manaraa.com

Overriding is allowed. However, similar to the overriding of methods, the newly de�ned player-class constraint must be more speci�c than the one to be overriden. For example, the player-classconstraint for Employee is Person, while the one for TA and RA are overwritten to GradStudentand Student respectively. Also the player-class constraint for ProjectLeader is the disjunction ofRA and Faculty.About the internal organization of an object: As mentioned previously, a role can be played byan object, or even by another role. As a result, an object can be represented as an acyclic graphwith the root being an object itself and all the other nodes being roles. For example, consider aperson object john playing multiple roles, with internal organization shown in Figure 2(b). johnis said to be the root player of all the roles in the acyclic graph. In this graph, the id# associatedwith di�erent nodes have di�erent meanings. For example, the id# of the root john denotes hisidentity number given by the government, the id# of role GradStudent denotes john's studentnumber when he is considered as a graduate student, the id# of role ClubMember denotes john'smembership number when he is considered as a club member, and so on. Hence, the context-dependent modeling of objects is supported with this organization of roles. Moreover, when weask for the membership number of john from his ClubChairman perspective, the message will bedelegated to its role player, i.e., ClubMember, to get the id#. Dynamic, multiple role playingand hence object evolution (as the behavior of an object changes) are supported by dynamicallyinserting or deleting roles from the acyclic graph.Comparisons with Fibonacci: Apart from the object-role relationships (i.e., the playership and own-ership introduced previously and to be described in Section 5), DOOR shares similarities primarilywith Fibonacci, as: both are strongly typed and support dynamic binding; both have separate hier-archies for object classes and role classes; both support dynamic object extension and contractionthrough dynamic role playing and role dropping respectively. However, they do have subtle di�er-ences, as described as follows.As objects contain their own state and methods (while in Fibonacci, objects consist of only identityand roles), if role constructs are never used, DOOR objects are structurally and behaviorallyexactly the same as classical objects, i.e., with only state and methods. Moreover, we can alwaysassume that the creation of an object includes the creation of a `base role' [13] such that every9

www.manaraa.com

object has a base role type (i.e., the static object type), which describes the initial characteristicsof an object upon creation and the persistent global properties under its evolution. We must pointout that persistent properties of an object can be as important as its dynamic behavior (by meansof roles) in certain application domains. We claim that our approach is more general than theobject representation in Fibonacci, because we can always de�ne a dummy object with no stateand behavior of its own but with di�erent roles to play. Hence an object will simply be a collectionof roles together with its identity. In Fibonacci, on the other hand, objects cannot be manipulatedindependently of their roles [2] and roles can be dynamically changing, so the global and persistentpart of an object's characteristics are lost. Moreover, roles are identi�ed by their class namesand we have implemented an abstraction mechanism based on subtype polymorphism such thata role can be identi�ed by any superclass of its class. However, only the behavior de�ned in thatsuperclass can be accessed from the role.3. Database Programming and Query EnvironmentThis section describes the basic programming and query constructs that support object-role modeling inDOOR. These constructs include the creation of classes, objects, and roles. Moreover, we also illustratethe use of select and foreach statements for the objects extended with roles.Create is a generic constructor in the DOOR programming and query environment. Speci�cally,create object-class, create role-class, create method, create object and create role arethe constructors for a new object class, role class, method, object and role, respectively. As shown inScript 1 and Script 2 of Figure 3, the object classes MAMMAL and PERSON, and the role classes STUDENTand GRADSTUDENT are de�ned, respectively. The keyword subclass-of represents the is-a relationshipin the schema and played-by represents the played-by relationship. The body of the class de�nition,which is similar to a traditional class de�nition, is self-explanatory. Similar to CLOS, methods arede�ned outside the classes, with an argument that speci�es the class to which it belongs.Similarly, objects are created with the constructor create object, as illustrated in Script 3. Anoptional global variable, andy, can be speci�ed and will be bound to a particular object in the database.Further reference to this variable is equivalent to the reference to the bound object. Alternatively, ifthe global variable is not speci�ed, as shown in Script 4, create object simply creates an object in the10

www.manaraa.com

Script 1:(create object-class MAMMAL:STRING sex;DATE date-of-birth)(create object-class PERSON subclass-of MAMMAL:INTEGER id#;STRING lastname, �rstname, midname)(create method PERSON age():return year(today() - date-of-birth))Script 2:(create role-class STUDENT played-by PERSON:INTEGER id#;DEPT dept)(create role-class GRADSTUDENT subclass-of STUDENT:INTEGER o�ce;FACULTY advisor)
Script 3:(create object PERSON andy:id# is 96112038;name is "Andy";sex is "male")Script 4:(create object PERSON:id# is 96112038;name is "Andy";sex is "male")Script 5:(de�ne object PERSON john:name is "John";sex is "male")(insert john into University-Database)Script 6:(create role andy GRADSTUDENT:id# is 2069694;advisor is joe;...)Figure 3: Example scripts for class, object, and role creation.database and further retrieval of the object has to be done through the select or foreach statements.Classes, objects and roles can be created in memory only through the generic constructor define,with usage the same as for create, and stored in the database only if needed. For example, in Script 5,an object john is created in memory that can be inserted into database explicitly if needed. This featureis useful for testing, or trial-and-error adhoc query construction or database prototyping. Similar toobjects, roles are created and played with the constructor create role as shown in Script 6.Script 7 shows a simple DOOR select statement (cf. OSQL and OQL in [8]) that selects all femalenames. Script 8 shows another example which selects id# and name from every object s playing a role asa STUDENT of either the Computer Science department or the Electrical Engineering department.To support batch creation, a foreach construct is provided. Its syntax is similar to the select statementmentioned above, with an additional action part after the keyword do, as shown in Script 9. In thisexample, each student who is not playing the LIBRARY-CARD-OWNER role is updated to play it, with the11

www.manaraa.com

Script 7:(select o.name from o is-a PERSONwhere o.sex == "female")Script 8:(select s.id#, s.namefrom s is-a STUDENTwhere s.dept in (select dfrom DEPTwhere (d.name = "Computer Science")or (d.name = "Electrical Engineering")))
Script 9:(foreach o is-a STUDENTwhere not(o is-a LIBRARY-CARD-OWNER)do(write :console "Name:" o.name "Lib-ID:");(create role o LIBRARY-CARD-OWNER:id# is (read :console);year is 1996))Figure 4: Example scripts to illustrate the select and foreach statements.initialization of attributes as speci�ed. The read and write commands are used to attain the valueexternally (from the console interactively) with the creation of each role.4. Objects with Multiple Role PlayingThis section describes issues involved in supporting multiple role playing (of di�erent types or of thesame type), context-dependent behavior modeling, and polymorphism of roles. These issues includepath expressions, attribute name conicts, di�erent method lookup schemes, various object and rolecomparison operators, and di�erent constraints for roles.4.1. Path ExpressionThe basic notation to access a role r of object o is speci�ed using `!', i.e., object !role. For example,john!ClubMember means access the ClubMember role of object john in Figure 2(b). In other words,we consider john from his ClubMember perspective. Whenever a role cannot be found according to theexpression, a role not found exception is raised. For example, john!GradStudent!TA# will not raise arole not found exception while john!ClubMember!TA# will. We can specify the attribute id# of johnfrom the TA context simply by the exact path expression john!GradStudent!TA.id#.However, in some cases, two roles may have exactly the same playing sequence (or acquisitionsequence). For example, a person peter may play two roles of the same role class ClubMemberwith di�erent values for the attribute clubnames. Since a role is identi�ed by its role class nameand its value, we need some role selection mechanism based on the role's value. To resolve this,12

www.manaraa.com

DOOR provides an optional role selection criteria based on the symbol `| <boolean expression>'.For example, we can express the attribute id# of a particular ClubMember of peter by writingpeter!(ClubMember|clubname="CS Club").id#.4.2. Attribute Name ConictsThe semantics of attribute inheritance are crucial because attributes are the places that hold the stateof an object. To resolve the ambiguity due to the name conicts arising from the di�erent roles beingplayed, the keyword UNIQUE is used to specify if attributes with the same names actually denote thesame state variable. Otherwise, name conict is automatically solved by accessing object from di�erentroles.As we discussed in the previous section, the di�erent id#s of john in Figure 2 mean di�erentthings depending on which context/perspective we consider. Name conict, as in the one caused bymultiple inheritance, is solved as attributes, with the same name, of di�erent roles of the same objectcan be accessed independently. For example, we can access john.id# and john!GradStudent.id#independently although both attributes are named the same (i.e., id#), where john.id# denotes hispersonal identity number assigned by the government and john!GradStudent.id# denotes his studentidentity number given by the university. However, is john!TA.id# 6= john!RA.id# ? To resolve attributename conicts such as this, we employ a methodology similar to the one suggested in [3]. The ideaof name conict resolution is as follows. Informally, the state of an object with multiple playing roles,which belongs to its parent object class together with several most speci�c role classes, is the unionof the attributes in those classes. However, the sets of attributes in those classes may not be disjoint,that is, name conicts may arise. To handle these situations we introduce the notion of the source ofan attribute. Intuitively, if an attribute belongs to the intersection of the attribute sets of two classesand it has in both classes the same source, that is, it is inherited from a common superclass, then theattribute is semantically unique, and thus the object must have a unique value for this attribute. If, bycontrast, the attribute has di�erent sources, then the two attributes in the two classes have accidentallythe same name, but represent di�erent information that must be kept separate. With roles this di�erentinformation can be then accessed according to di�erent contexts.This approach is used in [3] for all cases. However, it cannot address many situations in which the13

www.manaraa.com

attributes of di�erent roles need to store di�erent values even when they come from the same source. Atrivial example is that john!TA.salary is (in general) di�erent from john!RA.salary although salaryis de�ned in only a single source, i.e., Employee. Moreover, although the source of the attributesjohn!TA.dept and john!RA.dept is unique, i.e., the Employee role class, they may have di�erentvalues in a real situation. That is, John may work as a teaching assistant in the Computer ScienceDepartment and also as a research assistant in the Electrical Engineering Department. Therefore, inDOOR, the resolution similar to the one in [3] is used only for those attributes de�ned with a keywordUNIQUE. For all other attributes, the object may have two di�erent values for attributes with the samename in di�erent roles even though they are de�ned in a single class.Therefore, the attribute id# in role class Employee can be de�ned as UNIQUE so that john!TA.id#and john!RA.id# are not only equal but semantically the same attribute. Alternatively, we can alsode�ne it without the keyword UNIQUE if we want to have two di�erent identity numbers for TA and RAeven if they are for the same person.4.3. Method LookupIn traditional object-oriented languages, every message is dispatched only to the most speci�c class ofan object, which either has a method for the message, or looks for a method in its superclasses. The ideaof this message dispatching for the methods de�ned along the inheritance hierarchy (or is-a hierarchy)is still applied to each object, and each role, in DOOR. Indeed, in DOOR, this method lookup scheme isaugmented with a similar idea called delegation [18] along the played-by relationship of the roles beingplayed by an object. Two method lookup modes are supported:Upward lookup: the method is looked up �rst in the receiving role and then in its ancestor players.Double lookup: the method is �rst looked up in the receiving role, and then in all the descendantroles of the receiving role, and �nally in its ancestor players.They are illustrated in Figure 5 by assuming a message is sent to john!GradStudent. The default lookupmode is upward lookup. Upward lookup is used by the assumption that more general information aboutan object obtained from its particular role without the requirement of special privillege. Double lookupis used to access all information of a particular context, plus its general information can be accessedfrom that context. In fact, for these two lookup modes, DOOR insists that the method be �rst looked14

www.manaraa.com

john

TA RA

Student
Grad- Club-

Member

Club-
Chairman

Upward lookup

john

TA RA

Student
Grad- Club-

Member

Club-
Chairman

Double lookupFigure 5: Illustration for the two method lookup modes.up in the receiving role in order to achieve clean semantics of self recursion (i.e., a method which sendsmessage(s) to itself). In Fibonacci [2], only two lookup modes are provided: upward lookup and doublelookup. For its double lookup, the descendants of the receiving roles are looked up before the receivingrole. Hence the semantics of self recursion is unclear.4.4. Object and Role ComparisonsAs an object includes a collection of roles being played, a set of type inquiry operators and comparisonoperators are provided. The type inquiry operators are used to query both the persistent type andtransient type of an object. A type of an object is persistent if it does not change during the objectlifetime, otherwise, it is transient. The set of type inquiry operators is de�ned as follows:is-always: Object � Object-Class �! Boolean is used to query the persistent type of an object.is-always(o, oc) returns true if o is of object type oc. For example, is-always(john, Mammal)returns true if Person is a subclass of Mammal, and is-always(john, Cat) returns false.is-a: Object � Object-Class[Role-Class �! Boolean is used to query the transient type (includ-ing persistent type) of an object. is-a(o, c) returns true if o is of object type c or it is playinga role (directly or indirectly) which is of role type c. For example, is-a(john, Person) returnstrue and is-a(john, Student) returns true.can-play: Object � Role-Class �! Boolean is used to query about whether an object is qualifyto play a role of a particular role class. can-play(o, rc) returns true if o is quali�ed to (directly orindirectly) play a role which is of role type rc.roles: Object �! bag-of(Role-Class) is used to �nd out all the roles currently being played byan object. roles(o) returns a bag of roles being played by object o. Here a bag is used as a return15

www.manaraa.com

type instead of a set because an object may play multiple roles of the same role class. For example,roles(john!GradStudent) returns a bag of TA, RA, denoted by hjTA,RAji, and it is possible for aperson p to play two RA roles from two di�erent projects, i.e., roles(p) returns hjRA,RAji.The following is a set of equality operators:Object Identity: Two objects o1 and o2 are identical, denoted by identical(o1, o2), if they are thesame object.Shallow Equal: Two objects o1 and o2 are shallow equal, denoted by shallow-equal(o1, o2), if theirvalues are identical.Deep Equal: Two objects o1 and o2 are deep equal, denoted by deep-equal(o1, o2), if their values arethe same.The values of an object depend on the values of the attributes of an object, the values of the attributesof the roles being played, and the method lookup scheme being used.All the type inquiry and comparison operators support the context-dependent characteris-tics of objects. For example, referring to Figure 2, is-a(john, Student) returns true, andis-a(john!ClubMember, ClubChairman) returns false. Similarly, deep-equal(john!GradStudent,peter!GradStudent) compares the values of objects john and peter from GradStudent perspective.4.5. Player-Class Constraints versus General Role ConstraintsIn general, there are many cases where a role should not be rooted to a particular object class (suchas [5, 13]) because objects of di�erent disjointed classes may be quali�ed to play a particular role.Otherwise, an arti�cial superclass needs to be created for these disjointed classes such that the roleclass of that particular role can be rooted to it. For example, a library card holder must be either astudent or a faculty (but not both a student and a faculty), a research project-leader can only be eithera faculty or a RA, etc. With a non-exclusive link, by means of the player-class constraint, between anobject class and a role class, the above problem is avoided. A player-class constraint can be speci�edin the role class de�nition using the keyword played-by, as demonstrated in Script 2. In some cases,an object of multiple speci�c classes (playing multiple roles) may be required in order to be quali�edto play a particular role. However, discussion of this conjunctive player-class constraint is beyond thescope of this paper. 16

www.manaraa.com

The constraint issue is not addressed in most of the related work on roles, including Fibonacci [1, 2].Although the concept of role constraints has been mentioned in some work on roles (like constraints inthe transition rules in [13], role class hierarchies rooted in an object class [5], and the transition rules inthe role classes in [22]), they are too restrictive to be de�ned at the type/class level. For example, wemay have a new role Project-Leader, which can only be played by either a RA or a faculty member inFigure 2(a). Gottlob et al.s work [5] cannot model this situation without creating another superclass forRA and faculty and rooting the Project-Leader under this newly created arti�cial class. On the otherhand, in [13], all role constraints are de�ned at the class level. However, many real-world applicationsrequire di�erent role constraints for di�erent object instances. For example, although each departmentrequires a TA to be a graduate student, it is possible and natural that the Mathematics Departmentmight require their TAs to come from the same department, while students from the MathematicsDepartment, Electrical Engineering Department, and Computer Science Department all can be TAs ofthe Computer Science Department. Such constraints should be de�ned in the owner (object level) ofthe TA roles, i.e., the individual departments.Moreover, the importance of player-class constraints has been previously overlooked. It would beuseful for a role to access its player, e.g., by calling its method. However, type safety cannot beguaranteed if we cannot constrain the possible types of a role player. Obviously it will be a disaster ifa method in TA calls a method de�ned in GradStudent but not Undergraduate, and, peter, being anundergraduate, tries to play a role as a TA. Therefore, the player class constraint in DOOR is for thesake of type safety rather than to increase modeling power.Unlike most of the existing systems that have role constraints speci�ed in object classes [13], wehave player-class constraints that can optionally be speci�ed in the role classes so that the speci�cationof object class de�nitions is the same as that for traditional class de�nitions. Therefore, if roles arenever used, the de�nition of classes and manipulation of objects are exactly the same as traditionalclass-based object-oriented systems. On the other hand, even when roles are to be used, users can neverspecify the player-class constraints in all the role classes such that the role de�nitions are the same asthose in Fibonacci (i.e., without being concerned about whether a player is quali�ed to play a role), orjust specify a single class as a player-class constraint to model a uni�ed class hierarchy as described in[5]. In other words, our approach (based on player-class constraints) is more general and exible than17

www.manaraa.com

the other existing approaches.5. Relationships between Objects and RolesApart from the traditional associations (e.g., aggregation) between objects, we describe the modelingof relationships among roles, or between objects and roles in this section. These relationships modelthe dynamic relationships between entities as they evolve over time. Entities can easily gain additonalproperties or give up part of their properties by establishing these links or dropping them respectively.Before we go on to the modeling aspect, let us describe another way to create a role. In addition tothe create role construct mentioned previously, a role can be created with the creation of an object,or another role, by being owned by it. This can be done by specifying the keyword own before anattribute declaration of a class de�nition. If the attribute is of a role class, its value (a role) will becreated automatically with an instantiation of the class. If the attribute is of an object class, an exclusivecomposition [9] is assumed between the class instance and the attribute's value.Script 10:(defclass object DEPARTMENT:STRING name;own DEPTHEAD head;own fFACULTYg facs;...)(defclass role DEPTHEAD played-by FACULTY:own SECRETARY sec;FACULTY associate;...PRE:owner(self)=owner(player) ^ ...)Script 11:(create DEPARTMENT csd:name is "Computer Science";head.sec is judy; ...);...)
Script 12:(update csd: head is ray)(update ray: associate is joe)Script 13:(update csd:head is ray;head.associate is joe)Script 14:(update csd:head is vicki)Figure 6: Example scripts to illustrate the ownership of roles.Suppose a department and a department head are de�ned for the university database (Figure 2(a))as in Figure 6. A department owns a DEPTHEAD role and a set of FACULTY roles. A department head18

www.manaraa.com

owns a SECRETARY role, and there is also an assistant (associate department head) for him/her. Thenthe object csd, computer science department, is created with the department head's secretary beingjudy. Up to now, the department head is still unde�ned, but the department can preset some propertiesfor the head such that the one who picks this role up will possess these properties. In this case, judywill be the head's secretary regardless of whom the head will be. So after this, judy is playing a role asa secretary of the department head. Then, in Script 12, ray becomes the head and he chooses joe as hisassistant (the object-role relationship is visualized as in Figure 7). In this case, if ray steps down laterand vicki becomes the new head, the secretary will be the same (i.e., judy) but the value of associatewill be dropped and become unde�ned again. So vicki has to choose her own assistant from the faculty.
csd

joe ray

judy

csd

ray

joe

FACULTY

judy

before
DEPTHEAD

SECRETARY

head
FACULTY

FACULTY FACULTY

facs

object owns

plays

attribution

The Key
role

set-of

after

SECRETARY

head

DEPTHEAD

FACULTY

associate

associate

sec

sec

Figure 7: Object-role relationship for the computer science department.Alternatively, the department can elect or assign joe as the associate department head by eitherinitializing associate as the creation of csd (same as initializing judy as the secretary), or assigning joeas associate under the update of csd as shown in Script 13. In this case the value of associate, andalso sec, will be retained if ray abandons the role as head. Therefore, if vicki later picks this role upand becomes the new head, she does not need to reassign these values. The department can updateassociate, and preserve its value even when the player of head is no longer de�ned. This is because the19

www.manaraa.com

attribute associate is of a role owned by (i.e., with the keyword own) the department. As describedpreviously, the de�nition of own is transitive. Note the di�erence between an attribute with a keywordown and without. For example, judy starts playing a role as a SECRETARY after she �lls the job sec ofthe department, but joe does not become a FACULTY member because of being assigned as associate. Infact, he needs to be a FACULTY member in order to be the associate department head.A role acts as a bridge (for abstraction and information sharing) between its owner and player whilethe ownership of the information is clearly de�ned. For example, a university can revise the salaryfor department heads without knowing who the dept head of csd is, i.e., without accessing the actualobject, say joe. It updates the salary by updating csd.head.salary. This is di�erent from and better thanhaving a reference pointer that points to joe, as the university can update the salary of the departmenthead even if the position is open (i.e., if the university does not know which object the department headis). This models the fact that the role of a department head is actually de�ned by (or owned by) thedepartment, not by the object who is going to be the department head.As there is no globally unique identi�er for a role, it can only be referenced through the played-by and/or owned-by links from an object. A role is identi�ed through its role classname and value.Therefore, polymorphism is supported. Furthermore, to solve the reference problem caused by theobject update, for example, one can refer to the department head of csd through csd.head (which is arole) instead of an object. Whenever a message is sent to it, it will be delegated to the object that isplaying the role. If no such object is playing it, an exception is raised.Object Evolution with the Changing Object-Role Relationship We have described the use ofroles to link the relationships between objects dynamically, such that object X playing a role R ownedby object Y (through the attribute r) can extend itself with the properties of R, and other objects canreference X through Y.r. As X keeps establishing links between di�erent objects, and dropping some ofits connected links, its behavior will be changed (extended and contracted from time to time). Moreover,these links (i.e., role playing) also represent the dynamic relationship between di�erent entities. Tofurther explain this, consider an object John which evolves during its lifetime, as shown in Figure 8.John �rst plays a role as one of the high-school students (HS-Student) of HK High School. At that time,the dynamic (or temporary) relationship between John and HK High School is built, and John gains20

www.manaraa.com

HK High School

Car-C1 Car-C2

a composition/
association relationship

CEO

John

HS-Student

Undergraduate

Grad-
Student

Alumni

Club-
Member Club-

Chairman

CS Club

CSD

Univ. S & T

XYZ Inc.

John & Partners, Inc.

Engineer

Manager

CarOwnerCarOwner

Retired

time

Creation of
object John
who is a
Person (and
is-always a
Person).

John becomes
a high-school
student of
HK High
School.

John becomes an

also a club-member.
Afterwards he becomes
the chairman.
After graduation, he
continues his master
degree in the same
department.

undergraduate and
John gets his first job,
as an engineer in XYZ
Inc. He buys a car at the
same time. After a few
years, he becomes a
manager and changes
his car to a better model.

John starts his
own company
and plays a role
as the CEO.
He retires when
his son takes over
the company.

Unfortunately,
John has to be
deleted from the
database!

1920- 1931- 1938- 1944- 1963- 1991-

Figure 8: The evolution of object John during its lifetime.the properties of being a HS-Student pre-de�ned by HK High School. Afterwards, John becomes anUndergraduate. It does not hold the properties of HS-Student anymore, as its role for HK High Schoolis di�erent. After leaving the university, John becomes an Engineer and then a Manager of XYZ Inc.For these two jobs, John owns the same `kind' of properties and maintains the same `kind' of relationshipwith XYZ Inc, i.e., being an Employee of XYZ Inc. This can be indicated by the fact that both Managerand Engineer are subclasses of Employee, and in this case they are owned by the same object. However,there are certainly some di�erences between being an Engineer and being a Manager. At the end, Johnretires and plays the role Retired, which de�nes the properties of a retired person. This role can beplayed by using the constructor create role described previously. Note that when John is deleted, allthe roles being played by him and not owned by some other objects will be deleted automatically.6. SummaryWe have presented an overview of the data model, and outlined the modeling constructs and environmentof DOOR, an object-role database system. This paper has presented several novel constructs, basedon roles, to support object evolution, dynamic role (context-dependent) modeling, objects of multiple21

www.manaraa.com

speci�c classes, and object-role relationships in object-oriented databases. The most important of theminclude the player-class constraint, role playership and ownership. The player-class constraint allowsany player to play a role type-safely if they satisfy the constraint. We have pointed out the signi�canceof role playership and ownership. A role acts as a bridge (for abstraction and information sharing)between its owner and player while the ownership of the information is clearly de�ned. Di�erent fromother related work, objects can evolve and gain properties prescribed by the owners of roles. Moreover,we have discussed some interesting issues which include playing multiple roles of the same type, playerchange (or role migration), role ownership and playership, and player-class constraint, etc.Our ongoing work includes the integration of the concept of composite objects with roles and furtherinvestigation of role constraints. Meanwhile, the e�cient implementation of roles is under investigation.The �rst DOOR prototype is implemented using meta-object protocol in a lisp-like language, calledScheme. Most of the runtime e�ciency issues are not addressed, except the mechanisms for methodlookup and attribute name conict resolution. We are also still testing DOOR by implementing somenon-trivial applications such as multimedia systems [21].Acknowledgments We thank Prof. Stott Parker at UCLA for his valuable comments and provid-ing a stimulating work environment during this work. We also thanks M. Mira da Silva at Universityof Glasgow, Chih-Cheng Hsu at UCLA and Eric Lam at Hong Kong University of Science and Tech-nology for useful comments. This research is partially supported by a research grant in Hong KongRGC96/97.HKUST.757/96E.References[1] A. Albano, R. Bergamini, G. Ghelli, and R. Orsini. An object data model with roles. In R. Agrawal, S. Baker,and D. Bell, editors, Proceedings of the 18th International Conference on Very Large Databases, pages 39{51,Dublin, Ireland, August 1993.[2] A. Albano, G. Ghelli, and R. Orsini. Fibonacci: A programming language for object databases. VLDBJournal, 4(3):403{444, 1995.[3] E. Bertino and G. Guerrini. Objects with multiple most speci�c classes. In ECOOP'95 - Object-OrientedProgramming. Springer LNCS952, 1995. 22

www.manaraa.com

[4] D.H. Fishman et al. Iris: An object-oriented database management system. ACM Trans. on O�ce Infor-mation Systems, 5(1):48{69, January 1987.[5] G. Gottlob, M. Schre, and B. Rock. Extending object-oriented systems with roles. ACM Transactions onInformation Systems, July 1996.[6] G. Kappel et al.Workowmanagement based on objects, rules, and roles. Bulletin of the Technical Committeeon Data Engineering, 18(1):11{18, March 1995.[7] M. Kifer, W. Kim, and Y. Sagiv. Querying object-oriented databases. In Proceedings of ACM-SIGMODInternational Conference on Management of Data, pages 393{402, 1992.[8] W Kim, editor. Modern Database Systems: The Object Model, Interoperability, and Beyond. Addison-Wesley,1995.[9] W. Kim, E. Bertino, and J.F. Garza. Composite objects revisited. SIGMOD Record, 18(2):337{47, June1989.[10] W Kim and F.H. Lochovsky, editors. Object-Oriented Concepts, Databases, and Applications. Addison-Wesley, 1989.[11] H. Lieberman. Using prototypical objects to implement shared behavior in object-oriented systems. InN. Meyrowitz, editor, Object-Oriented Programming: Systems, Languages and Applications, pages 214{223,October 1986.[12] M.P. Papazoglou. Roles: A methodology for representing multifaceted objects. In Proceedings of the Inter-national Conference on Database and Expert Systems Applications, pages 7{12, 1991.[13] B. Pernici. Objects with roles. In IEEE/ACM Conference on O�ce Information Systems, Cambridge, Mass.,1990.[14] J. Richardson and P. Schwartz. Aspects: Extending objects to support multiple, independent roles. InACM-SIGMOD International Conference on Management of Data, pages 298{307, Denver, Colorado, May1991. ACM SIGMOD Record, Vol. 20.[15] M. Schre and E.J. Neuhold. Object class de�nition by generalization using upward inheritance. In Proceed-ings of IEEE 4th International Conference on Data Engineering, pages 4{13, 1988.[16] E. Sciore. Object specialization. ACM Transactions on Information Systems, 7(2):103{122, April 1989.[17] J.J. Shilling and P.F. Sweeney. Three steps to view: Extending the object-oriented paradigm. OOPSLA '89,ACM SIGPLAN Notices,, 24(10):353{361, October 1989.23

www.manaraa.com

[18] L.A. Stein. Delegation is inheritance. In OOPSLA '87 Proceedings, October 1987.[19] R.K. Wong, H.L. Chau, and F.H. Lochovsky. A data model and semantics of objects with dynamic roles.Submitted for publication.[20] R.K. Wong, H.L. Chau, and F.H. Lochovsky. DOOR: A dynamic object-oriented data model with roles.In Technology of Object-Oriented Languages and Systems (TOOLS), The 21st International Conference.Prentice-Hall, November 1996.[21] R.K. Wong, H.L. Chau, and F.H. Lochovsky. The roles and views of multimedia objects. In Proceedings ofthe 1996 International Conference on Multi-Media Modeling. World Scienti�c Press, 1996.[22] R.K. Wong and Q. Li. Manufacturing systems modeling with roles: A comprehensive approach. In IFIPWG2.6 Sixth Working Conference on Database Semantics (DS-6), Atlanta, Georgia, USA, May 1995.

24

