Number: 165

The Design of an Object-Role Database Management System

Raymond K. Wong* H. Lewis Chau* Frederick H. Lochovsky
Department of Computer Science
Hong Kong University of Science & Technology
Clear Water Bay, Hong Kong

{wongkk,lewis,fred}@cs.ust.hk

Abstract

In many class-based object-oriented database systems the association between an instance and a
class is both exclusive and permanent. Therefore, these systems have serious difficulties in representing
objects taking on different and multiple roles over time. Recently, some researchers have proposed the
use of roles to tackle these problems. In their approaches, objects acquire additional properties by
dynamically playing roles. However, relationships between objects and roles have not been addressed.
Therefore, an object may evolve on its own by dynamic acquiring new roles; without coordination or
cooperation by any other objects.

In this paper, a novel object-oriented database management system, called DOOR, which supports
object evolution, dynamic role (context-dependent) modeling, objects of multiple specific classes, and
object-role relationships, is described. In DOOR, a role is an entity with state and behavior, but does
not have globally unique identity. Therefore, its existence has to be associated with an object. It
acts as a special association between its owner and player, such that its owner can prescribes its state
and 1its player gains its properties through dynamic role playing. In this way, an object can evolve
dynamically and cooperatively according to its associating objects. Furthermore we discuss some
interesting features of roles which have been seldom addressed. They include playing multiple roles
of the same type, player change (or role migration), role ownership and playership, and player-class
constraint, etc. We show by examples that all these features are very useful for applications in which

objects take on different and multiple roles over time.

*Part of this'work has been done when the authors are visiting the Computer Science Department at UCLA.

www.manaraa.com

1. Introduction

Most object-oriented data models are based on the notion of class. In these models, real-world entities

L. In reality, however, objects often belong to

are represented as instances of the most specific class
several most specific classes. For example, a person John might play multiple roles at time #. He

may be a graduate student, a teaching assistant and research assistant, a club-member and chairman

at the same time, as shown in Figure 1. Thus, the object representing this person does not have a

ClubChairman

‘ ClubMember ‘

””J ‘ Resear chAssistant ‘ L

‘ TeachingAssistant ‘

‘ GradStudent ‘ ‘ Employee o

Person

ty timet

Figure 1: A possible evolution of object John.

unique most specific class, but rather has a set of most specific classes. Although this situation can be
easily represented in a model with multiple inheritance by defining a subclass of all the involved classes,
this solution may lead to a combinatorial explosion of artificial subclasses. Another shortcoming of the

multiple inheritance approach is that it provides only a single behavioral context for an object [14].

Moreover, in the conventional class-based object-oriented approach, the association between an
instance and a class is exclusive and permanent. Therefore, this approach is appropriate only if the
entities to be modeled can be partitioned into a set of disjoint classes and never change their class. The
problem is even more cumbersome if an entity can take on several roles simultaneously. However, many
real-world applications are dynamic and encompass entities that evolve over time. Person entities give
the most illustrative example. A person may take on different roles at different times. He/she may
become a student, a club member, and then an alumni, an employee, and so forth. But a person is not
the only kind of entity which evolves over time; so does an office document or a product in a production

line, etc.

! An object o can belong to a set of classes S. We call an element of S that has no subclass in S a most specific class

of object o.

www.manaraa.com

Recently, some researchers have proposed extending ob ject models to incorporate the concept of roles
to tackle these problems in various application domains. These include office modeling [13], semantic
modeling [14, 16], object-oriented modeling [12], manufacturing system modeling [22], and multimedia
applications [21]. In these approaches, a role extends an existing object with additional state and
behavior. An object may have many roles that come and go over time. Rather than being an instance
of some unique subclass defined through multiple inheritance, an object simply is an instance of many
types by virtue of having many roles. Every object reference is to a particular role, and the behavior of

the object depends on which role is being referenced.

The restriction that an object be associated with a single, most-specific type in the database context
was first relaxed in Iris [4]. Iris allows an object to belong to several types. But it misses the possibility
of role-specific / content-dependent behavior, i.e., the entire set of types an object belongs to is visible
in every context. Hence two roles of an object may not have different methods of the same name.
Afterwards, the importance and support of multiple perspective/context-dependent behavior of objects
were described in multiple views [17], ORM [13], and Aspects [14]. However, in these approaches, roles
are not classified and encapsulated as classes and there is no inheritance or delegation defined between
roles. Hence, role sharing among different classes is impossible. Moreover, no explicit operators for
switching between roles were defined. Sciore’s work [16] allows classes to be viewed as an individual
object’s auxiliary roles or perspectives, and objects to define their own inheritance paths. However, this
approach is biased towards the prototyped-based approach and is more appropriate for experimental
phases of system development, as opposed to database design. A similar idea was proposed by Schrefl
and Neuhold in [15], except this approach towards class-based instead of prototype-based, that possible

object hierarchies must be predefined by role specialization classes at the type level.

The most recent languages which support roles include a new, strongly-typed database language
called Fibonacci [1, 2] and a Smalltalk-based role extension to objects [5]. In Fibonacci, an object
simply consists of an identity and an acyclic graph of roles. Fach role can be dynamically added or
dropped. Objects are defined in classes and roles are defined separately and form a different hierarchy.
Alternatively, Gottlob et al. [5] demonstrated the extension of Smalltalk for incorporating roles and
emphasized the way to extend an existing language to support roles. Moreover, different from Fibonacci,

theypineludedsmultiplesinstantiation of roles, and the integration of class and role hierarchies. To some

www.manaraa.com

extent, both Fibonacci and Gottlob’s work are similar to ORM in the sense that roles are also rooted
in (though not encapsulated in) a class. Different from ORM, aspects, and views, however, the roles
attached to a class in both approaches can form their own is-a hierarchy. However, relationships between
objects and roles have not been addressed in all these work. Therefore, an object may evolve on its
own by dynamic acquiring new roles, without coordination or cooperation by any other objects. For
example, a person object may gain a manager role and initialize its state on its own. Although a
company object/name may be referenced by one of its attributes, the ownership information of the role
is missing. That is, if that person later resigns the job, should the properties of the manager still persist
and be ready for the new person who fills the vacancy? More naturally and reasonably, the detailed
properties and initial state of a manager role should be prescribed by his/her company (the role owner)

and gained by the one (the role player) who plays this role.

This paper presents an object-role database system called DOOR, whose goal is to provide gen-
eralized role support for dynamic and evolving applications. DOOR is based on an object-with-role
model. All real-world entities are classified as either object classes or role classes. Their instances are
called objects and roles respectively. A role extends an existing object with additional state and behav-
ior while sharing the same object identity. Therefore, its existence has to be associated (by means of
played-by and owned-by relationships to be described) with objects. In particular, DOOR supports the
operations for dynamic role playing and context-dependent behavioral modeling. Since an object can
play multiple roles and acquire them at the instance level, instantiation of multiple specific role classes
are supported such that the association between an instance and its role classes are neither exclusive nor
permanent. Most importantly, we emphasize the relationships between roles and objects, as well as the
persistent and transient properties of objects. In DOOR, a role acts as a special association between its
owner and player, such that its owner can prescribes its state and its player gains its properties through
dynamic role playing. In this way, an object can evolve dynamically and cooperatively according to its
associating objects. Furthermore we discuss some interesting features of roles which have been seldom
addressed. They include playing multiple roles of the same type, player change (or role migration), role
ownership and playership, and player-class constraint, etc. We show by examples that all these features

are very useful for applications in which objects take on different and multiple roles over time.

‘Thesorganizationgofthegrestyof this paper is as follows. Section 2 reviews the data model briefly and

www.manaraa.com

presents a fragment of a university database as an example to be used throughout the paper. Section
3 introduces the basic programming and query constructs of DOOR. In Section 4, important issues
such as an object with multiple most specific types, multiple roles of the same type, context-dependent
behavior, and polymorphism of roles are discussed. These properties are supported by various facilities
in DOOR which include path expressions, attribute name conflict resolution, different method lookup
schemes, generic comparison operators, and different levels of constraints. Section 5 describes the
different relationships (mainly playership and ownership) between objects and roles. Object evolution

based on these relationships is presented. Finally Section 6 concludes the paper.

2. An Object-Role Data Model

2.1. Informal Overview

We briefly review the object-role data model formally defined in [19, 20]. The model extends a typical

object-oriented data model (e.g. [7, 10]) with the notion of roles.

Object and role representation: Objects consist of both object state (in terms of the values of
attributes), methods, and a set of dynamically changing roles. They are referred to via their
logical object ids (oid) and any oid uniquely identifies an object. Oids may carry certain semantic
information. For instance, we consider ‘20’ to be the oid of the abstract object with the usual
properties of the number 20. The object state is encapsulated and can only be queried and updated
by sending messages to the object. An object is internally organized as an acyclic graph with the
root being the object itself, and all the other nodes being roles. The parent node of any node A
in the graph is called the player (or role player) of A, and A is said to be played-by its player. A
role is also an entry to access the object it belongs to: an object can be accessed through itself
(we consider the object itself as a base role) or one of its roles, and its behavior depends on this
role. On the other hand, roles encapsulate both state and behavior, but do not have a persistent,
globally unique identity. A role can be itself a player and include other roles being played.

Attributes and methods: Objects are described via attributes, and all our objects are tuple-objects,
whose fields are the values of the object’s attributes. If the attribute is single-valued, then the
value is a single oid; if the attribute is set-valued, then the value is a set of oids. Since DOOR is

strongly typed; a type signature needs to be assigned to each attribute in a class definition. If the

www.manaraa.com

signature is an object type, the attribute value must be of that type or any subtype of that type.
If the signature is a role type, then the value must be an object which is playing a role of that
type or of a subtype of that type. Moreover, an object/a role X can own a role R such that R
becomes part of the properties of X. Another object can share these properties by playing R. As
a result, R bridges the relationships between its owner and its player. This issue will be discussed
extensively in the section on object-role relationship modeling. A method, invoked in the scope of
an object (or a role) on a tuple of arguments, returns an answer, and, possibly, changes the state
of that object (e.g., by changing the value of an attribute). As a function, each method has an

arity — the number of its arguments. An attribute is regarded as a 0-ary method.

Object class and role class: Object classes have the function of organizing the persistent properties
of objects into sets of related entities, while role classes organize their transient properties. The
instance-of relationship between objects (or roles) and classes determines which objects (or roles)
belong to which classes. The IS-A or subclass relationship, is defined between classes and is acyclic.
If a class (' is a subclass of another class C’, then all instances of ' must also belong to C’. A
player-class constraint can be optionally defined in the role class, to limit the possible player types
of a role. If it is omitted, a player of any type is assumed. The player-class constraint is used to
support the type-safe implementation of the methods in roles, as it may call methods in a role
player. Besides the player-class constraint, other general constraints can be defined in the class-
level and/or instance-level to model the fact that not every object is qualified to play a particular
role. Similar to the other properties of a class, the player-class constraint of a class will be inherited

by all its subclasses.

Types: The type of a class C is determined by the types of its methods, described as a signature of
the form Meth : Argy,...,Argy, — Result, or Meth : Argy,...,Arg, — Result, for single-
valued or set-valued methods, respectively. The signature is attached to the definition of class C,
where Arg; and Result are class names, and means that when arguments that are instances of
classes Argy,...,Argy, respectively, are passed to the method Meth, the result is expected to be
an instance, or a set of instances, of the class Result, depending on whether Meth is single- or
set-valued, respectively. Note that there are actually n 4 1 (rather than n) arguments, where the

0B argumentrismotimentioned, because it is the object of class C for which the signature is defined.

www.manaraa.com

A method can have several signatures, each constraining the behavior of the method on different
sets of arguments. When this is the case, the method is said to have a polymorphic type. The
signature of a method can include role types. If a role type is included in the method signature,
the corresponding object must be playing such a role and will be treated context-dependently from
that perspective. Otherwise, a type violation is caused. The type of an object is more complicated
and its formal description is beyond the scope of this paper. Informally, an object type consists of
a static component, i.e., the type of its object class, and a dynamic component, i.e., the types of

the roles being played.

Inheritance and delegation: Methods, and the player-class constraints if there are any, defined in
the scope of a class ' are inherited by the subclasses of (' through the is-a relationship. If there
are different player-class constraints defined in a subclass, a most specific class will override a
relatively more general one until all of them are disjoint. Inheritance is not defined for the played-
by relationship. Instead, the automatic delegation between roles and their corresponding players
is used. For example, suppose we model an employee e as a role of a person p, and sex is an
attribute of person but not of employee. Then sez(e) would be a type error. We can correct this

error by delegating the evaluation of sezx to played-by(e) [11]. This amounts to replacing sez(e) by

sex(played-by(e)).
2.2. Example: A University Database

In this subsection, a schema for a university database is used to illustrate the above object-role data

model.

About the university: There are several departments in the university. Fach department has many
undergraduates, graduate students, teaching assistants (TA), research assistants (RA), faculty,
administrative staff (AdminStaff), and a department head (DeptHead). All TAs, RAs, faculty,
and of course AdminStaff are regarded as university employees. A DeptHead may be employed
directly from outside, or elected from the existing faculty, and he/she has to perform also the duties
of a faculty member (which include teaching and research). Each faculty may be involved in more
than one research project. They can hire graduate students, or some outstanding undergraduates,

to.work as - RAs for the projects. Each project may have one or more than one project-leader(s).

www.manaraa.com

A project-leader is himself/herself a faculty or a RA. Different from being a RA, only graduate
students can be employed as TAs, to tutor the undergraduates. Moreover, there are some interest
clubs for students, faculty and even off-campus people (but they need to pay a higher membership
fee) to join. Each club has at least one chairman. As usual, in order to be a chairman, he/she

needs to be a member beforehand.

I, 1 owar | by r id#: integer
Inamel:ns(?ﬂenrg - Person played-by | i integer Club- [year:_irigega'
dob: date ~ T Employee - sala'ry;?ga] Member | duration : integer
m r dept : Department /‘\
| Z q\ = \
| played-by ! ion !
—_— Club- [year:integer
id#:integer — . L L B . L
1 qudent Teaching Research [| pgmingarrl. | Ch@irman [
7 R Staff Saff | L
SN LT TIEN 7T~
isa ! \\ 4\
e Eel isa
|
| Under- 1 Grad- |___ | r -
graduate Sudent |~ TA RA | 1 Faculty
7 A N 1 AN A - A
: - |
Project- | I sec: Secretary
Leader | DeptHead L

@

an object

arole

an object class (with classname in bold)
arole class (with classnameinitalic)
is-arelationship

played-by relationship

TheKey |

b oo

Figure 2: (a) An object-role database schema. (b) Internal organization of an object — a person john
who is playing multiple roles: GradStudent (graduate student), TA (teaching assistant), RA (research

assistant), ClubMember and ClubChairman.

About the schema: Figure 2(a) shows the corresponding database schema. For simplicity, attribution
and composition are not shown. The schema is similar to an traditional object-oriented database
schema extended with the played-by relationship which specifies the player-class constraint. Inher-
itance is defined along each is-a relationship, from a class to its subclasses. Apart from attributes

and methodsy the player=class constraints of a role class will also be inherited to all its subclasses.

www.manaraa.com

Overriding is allowed. However, similar to the overriding of methods, the newly defined player-
class constraint must be more specific than the one to be overriden. For example, the player-class
constraint for Employee is Person, while the one for TA and RA are overwritten to GradStudent

and Student respectively. Also the player-class constraint for ProjectLeader is the disjunction of

RA and Faculty.

About the internal organization of an object: As mentioned previously, a role can be played by
an object, or even by another role. As a result, an object can be represented as an acyclic graph
with the root being an object itself and all the other nodes being roles. For example, consider a
person object john playing multiple roles, with internal organization shown in Figure 2(b). john
is said to be the root player of all the roles in the acyclic graph. In this graph, the id# associated
with different nodes have different meanings. For example, the id# of the root john denotes his
identity number given by the government, the id# of role GradStudent denotes john’s student
number when he is considered as a graduate student, the id# of role ClubMember denotes john’s
membership number when he is considered as a club member, and so on. Hence, the context-
dependent modeling of objects is supported with this organization of roles. Moreover, when we
ask for the membership number of john from his ClubChairman perspective, the message will be
delegated to its role player, i.e., ClubMember, to get the id#. Dynamic, multiple role playing
and hence object evolution (as the behavior of an object changes) are supported by dynamically

inserting or deleting roles from the acyclic graph.

Comparisons with Fibonacci: Apart from the object-role relationships (i.e., the playership and own-
ership introduced previously and to be described in Section 5), DOOR shares similarities primarily
with Fibonacci, as: both are strongly typed and support dynamic binding; both have separate hier-
archies for object classes and role classes; both support dynamic object extension and contraction
through dynamic role playing and role dropping respectively. However, they do have subtle differ-
ences, as described as follows.

As objects contain their own state and methods (while in Fibonacci, objects consist of only identity
and roles), if role constructs are never used, DOOR objects are structurally and behaviorally
exactly the same as classical objects, i.e., with only state and methods. Moreover, we can always

assume that the creationof an object includes the creation of a ‘base role’ [13] such that every

www.manaraa.com

object has a base role type (i.e., the static object type), which describes the initial characteristics
of an object upon creation and the persistent global properties under its evolution. We must point
out that persistent properties of an object can be as important as its dynamic behavior (by means
of roles) in certain application domains. We claim that our approach is more general than the
object representation in Fibonacci, because we can always define a dummy object with no state
and behavior of its own but with different roles to play. Hence an object will simply be a collection
of roles together with its identity. In Fibonacci, on the other hand, objects cannot be manipulated
independently of their roles [2] and roles can be dynamically changing, so the global and persistent
part of an object’s characteristics are lost. Moreover, roles are identified by their class names
and we have implemented an abstraction mechanism based on subtype polymorphism such that
a role can be identified by any superclass of its class. However, only the behavior defined in that

superclass can be accessed from the role.

3. Database Programming and Query Environment

This section describes the basic programming and query constructs that support object-role modeling in
DOOR. These constructs include the creation of classes, objects, and roles. Moreover, we also illustrate

the use of select and foreach statements for the objects extended with roles.

Create is a generic constructor in the DOOR programming and query environment. Specifically,
create object-class, create role-class, create method, create object and create role are
the constructors for a new object class, role class, method, object and role, respectively. As shown in
Script 1 and Script 2 of Figure 3, the object classes MAMMAL and PERSON, and the role classes STUDENT
and GRADSTUDENT are defined, respectively. The keyword subclass-of represents the is-a relationship
in the schema and played-by represents the played-by relationship. The body of the class definition,
which is similar to a traditional class definition, is self-explanatory. Similar to CLOS, methods are
defined outside the classes, with an argument that specifies the class to which it belongs.

Similarly, objects are created with the constructor create object, as illustrated in Script 3. An
optional global variable, andy, can be specified and will be bound to a particular object in the database.
Further reference to this variable is equivalent to the reference to the bound object. Alternatively, if

thesglobalwvariablesismmotsspecified; as shown in Script 4, create object simply creates an object in the

10

www.manaraa.com

Script 3:
(create object PERSON andy:
1d# is 96112038;

Script 1: i "and
D E— name 1s "Andy";
(create object-class MAMMAL: . 4
ser 1s "male'")
STRING sex;

DATE date-of-birth)
(create object-class PERSON subclass-of MAMMAL:
INTEGER 1d#;
STRING lastname, firstname, midname)
(create method PERSON age():
return year(today() - date-of-birth))

Script 4:

(create object PERSON:
1d# is 96112038;
name is "Andy";

ser 1s "male'")

Script 5:
(define object PERSON john:

name 1s "John";

Script 2:

(create role-class STUDENT played-by PERSON:
INTEGER 1d#;
DEPT dept)

(create role-class GRADSTUDENT subclass-of STUDENT:
INTEGER office;
FACULTY advisor)

ser 1s "male'")

(insert john into University-Database)

Script 6:
(create role andy GRADSTUDENT:
1d# is 2069694;

advisor is joe;...)

Figure 3: Example scripts for class, object, and role creation.

database and further retrieval of the object has to be done through the select or foreach statements.

Classes, objects and roles can be created in memory only through the generic constructor define,
with usage the same as for create, and stored in the database only if needed. For example, in Script 5,
an object john is created in memory that can be inserted into database explicitly if needed. This feature
is useful for testing, or trial-and-error adhoc query construction or database prototyping. Similar to

objects, roles are created and played with the constructor create role as shown in Script 6.

Script 7 shows a simple DOOR select statement (¢f. OSQL and OQL in [8]) that selects all female
names. Script 8 shows another example which selects id# and name from every object s playing a role as
a STUDENT of either the Computer Science department or the Electrical Engineering department.
To support batch creation, a foreach construct is provided. Its syntax is similar to the select statement
mentioned above, with an additional action part after the keyword do, as shown in Script 9. In this

example, each student who is not playing the LIBRARY-CARD-0WNER role is updated to play it, with the

11

www.manaraa.com

Script T7:
(select o.name from o 1s-a PERSON

where o.sex == "female")

Script 8:

(select s.id#, s.name

Script 9:

(foreach o 1s-a STUDENT
where not(o is-a LIBRARY-CARD-OWNER)
do

(write :console "Name:" o.name "Lib-ID:");

from s is-a STUDENT

. (create role o LIBRARY-CARD-OWNER:
where s.dept in (select d

1d# is (read :comnsole);

from DEPT .
) year 1s 1996))
where (d.name = "Computer Science")
or (d.name = "Electrical Engineering")))

Figure 4: Example scripts to illustrate the select and foreach statements.

initialization of attributes as specified. The read and write commands are used to attain the value

externally (from the console interactively) with the creation of each role.

4. Objects with Multiple Role Playing

This section describes issues involved in supporting multiple role playing (of different types or of the
same type), context-dependent behavior modeling, and polymorphism of roles. These issues include
path expressions, attribute name conflicts, different method lookup schemes, various object and role

comparison operators, and different constraints for roles.

4.1. Path Expression

The basic notation to access a role r of object o is specified using ‘!, i.e., object!role. For example,
john!ClubMember means access the ClubMember role of object john in Figure 2(b). In other words,
we consider john from his ClubMember perspective. Whenever a role cannot be found according to the
expression, a role_not_found exception is raised. For example, john!GradStudent!TA# will not raise a
role_not_found exception while john!ClubMember!TA# will. We can specify the attribute id# of john
from the TA context simply by the exact path expression john!GradStudent!TA.id#.

However, in some cases, two roles may have exactly the same playing sequence (or acquisition
sequence). For example, a person peter may play two roles of the same role class ClubMember
with different values for the attribute clubnames. Since a role is identified by its role class name

and its value, we need some tole selection mechanism based on the role’s value. To resolve this,

12

www.manaraa.com

DOOR provides an optional role selection criteria based on the symbol ‘| <boolean expression>’.
For example, we can express the attribute id# of a particular ClubMember of peter by writing

peter! (ClubMember | clubname="CS Club").id#.

4.2. Attribute Name Conflicts

The semantics of attribute inheritance are crucial because attributes are the places that hold the state
of an object. To resolve the ambiguity due to the name conflicts arising from the different roles being
played, the keyword UNIQUE is used to specify if attributes with the same names actually denote the
same state variable. Otherwise, name conflict is automatically solved by accessing object from different

roles.

As we discussed in the previous section, the different id#s of john in Figure 2 mean different
things depending on which context/perspective we consider. Name conflict, as in the one caused by
multiple inheritance, is solved as attributes, with the same name, of different roles of the same object
can be accessed independently. For example, we can access john.id# and john!GradStudent.id#
independently although both attributes are named the same (i.e., id#), where john.id# denotes his
personal identity number assigned by the government and john!GradStudent.id# denotes his student
identity number given by the university. However,is john!TA.id# # john!RA.id# ? To resolve attribute
name conflicts such as this, we employ a methodology similar to the one suggested in [3]. The idea
of name conflict resolution is as follows. Informally, the state of an object with multiple playing roles,
which belongs to its parent object class together with several most specific role classes, is the union
of the attributes in those classes. However, the sets of attributes in those classes may not be disjoint,
that is, name conflicts may arise. To handle these situations we introduce the notion of the source of
an attribute. Intuitively, if an attribute belongs to the intersection of the attribute sets of two classes
and it has in both classes the same source, that is, it is inherited from a common superclass, then the
attribute is semantically unique, and thus the object must have a unique value for this attribute. If, by
contrast, the attribute has different sources, then the two attributes in the two classes have accidentally
the same name, but represent different information that must be kept separate. With roles this different

information can be then accessed according to different contexts.

This approach is used in [3] for all cases. However, it cannot address many situations in which the

13

www.manaraa.com

attributes of different roles need to store different values even when they come from the same source. A
trivial example is that john!TA.salary is (in general) different from john!RA.salary although salary
is defined in only a single source, i.e., Employee. Moreover, although the source of the attributes
john!TA.dept and john!RA.dept is unique, i.e., the Employee role class, they may have different
values in a real situation. That is, John may work as a teaching assistant in the Computer Science
Department and also as a research assistant in the Electrical Engineering Department. Therefore, in
DOOR, the resolution similar to the one in [3] is used only for those attributes defined with a keyword
UNIQUE. For all other attributes, the object may have two different values for attributes with the same

name in different roles even though they are defined in a single class.

Therefore, the attribute id# in role class Employee can be defined as UNIQUE so that john!TA.id#
and john!RA.id# are not only equal but semantically the same attribute. Alternatively, we can also
define it without the keyword UNIQUE if we want to have two different identity numbers for TA and RA

even if they are for the same person.

4.3. Method Lookup

In traditional object-oriented languages, every message is dispatched only to the most specific class of
an object, which either has a method for the message, or looks for a method in its superclasses. The idea
of this message dispatching for the methods defined along the inheritance hierarchy (or is-a hierarchy)
is still applied to each object, and each role, in DOOR. Indeed, in DOOR, this method lookup scheme is
augmented with a similar idea called delegation [18] along the played-by relationship of the roles being

played by an object. Two method lookup modes are supported:
Upward lookup: the method is looked up first in the receiving role and then in its ancestor players.

Double lookup: the method is first looked up in the receiving role, and then in all the descendant

roles of the receiving role, and finally in its ancestor players.

They areillustrated in Figure 5 by assuming a message is sent to john!GradStudent. The default lookup
mode is upward lookup. Upward lookup is used by the assumption that more general information about
an object obtained from its particular role without the requirement of special privillege. Double lookup
is used to access all information of a particular context, plus its general information can be accessed

frompthatycontextmlmfactypforntiiese two lookup modes, DOOR insists that the method be first looked

14

www.manaraa.com

CI ub-
ember

U pward Iookup Double Iookup

Figure 5: Illustration for the two method lookup modes.

up in the receiving role in order to achieve clean semantics of self recursion (i.e., a method which sends
message(s) to itself). In Fibonacci [2], only two lookup modes are provided: upward lookup and double
lookup. For its double lookup, the descendants of the receiving roles are looked up before the receiving

role. Hence the semantics of self recursion is unclear.

4.4. Object and Role Comparisons

As an object includes a collection of roles being played, a set of type inquiry operators and comparison
operators are provided. The type inquiry operators are used to query both the persistent type and
transient type of an object. A type of an object is persistent if it does not change during the object

lifetime, otherwise, it is transient. The set of type inquiry operators is defined as follows:

is-always: Object X Object-Class —— Boolean is used to query the persistent type of an object.
is-always(o, oc) returns true if o is of object type oc. For example, is-always(john, Mammal)

returns true if Person is a subclass of Mammal, and is-always(john, Cat) returns false.

is-a: Object X Object-ClassURole-Class —— Boolean is used to query the transient type (includ-
ing persistent type) of an object. is-a(o, c¢) returns true if o is of object type ¢ or it is playing
a role (directly or indirectly) which is of role type ¢. For example, is-a(john, Person) returns

true and is-a(john, Student) returns true.

can-play: Object X Role-Class —— Boolean is used to query about whether an object is qualify
to play a role of a particular role class. can-play(o, rc) returns true if o is qualified to (directly or
indirectly) play a role which is of role type re.

roles: Object — bag-of(Role-Class) is used to find out all the roles currently being played by

anrobjectiroles(o)returnsia bag of roles being played by object o. Here a bag is used as a return

15

www.manaraa.com

type instead of a set because an object may play multiple roles of the same role class. For example,
roles(john!GradStudent) returns a bag of TA, RA, denoted by (TA,RA[), and it is possible for a

person p to play two RA roles from two different projects, i.e., roles(p) returns (RA,RAJ.

The following is a set of equality operators:

Object Identity: Two objects o; and oy are identical, denoted by identical(o, o02), if they are the

same object.

Shallow Equal: Two objects o1 and oy are shallow equal, denoted by shallow-equal(o1, 0z), if their

values are identical.

Deep Equal: Two objects 01 and oy are deep equal, denoted by deep-equal(oy, o3), if their values are

the same.

The values of an object depend on the values of the attributes of an object, the values of the attributes
of the roles being played, and the method lookup scheme being used.

All the type inquiry and comparison operators support the context-dependent characteris-
tics of objects. For example, referring to Figure 2, is-a(john, Student) returns true, and
is-a(john!ClubMember, ClubChairman) returns false. Similarly, deep-equal(john!GradStudent,

peter!GradStudent) compares the values of objects john and peter from GradStudent perspective.

4.5. Player-Class Constraints versus General Role Constraints

In general, there are many cases where a role should not be rooted to a particular object class (such
as [5, 13]) because objects of different disjointed classes may be qualified to play a particular role.
Otherwise, an artificial superclass needs to be created for these disjointed classes such that the role
class of that particular role can be rooted to it. For example, a library card holder must be either a
student or a faculty (but not both a student and a faculty), a research project-leader can only be either
a faculty or a RA, etc. With a non-exclusive link, by means of the player-class constraint, between an
object class and a role class, the above problem is avoided. A player-class constraint can be specified
in the role class definition using the keyword played-by, as demonstrated in Script 2. In some cases,
an object of multiple specific classes (playing multiple roles) may be required in order to be qualified
to play a particular role. However, discussion of this conjunctive player-class constraint is beyond the

scope of this paper.

16

www.manaraa.com

The constraint issue is not addressed in most of the related work on roles, including Fibonacci [1, 2].
Although the concept of role constraints has been mentioned in some work on roles (like constraints in
the transition rules in [13], role class hierarchies rooted in an object class [5], and the transition rules in
the role classes in [22]), they are too restrictive to be defined at the type/class level. For example, we
may have a new role Project-Leader, which can only be played by either a RA or a faculty member in
Figure 2(a). Gottlob et al.s work [5] cannot model this situation without creating another superclass for
RA and faculty and rooting the Project-Leader under this newly created artificial class. On the other
hand, in [13], all role constraints are defined at the class level. However, many real-world applications
require different role constraints for different object instances. For example, although each department
requires a TA to be a graduate student, it is possible and natural that the Mathematics Department
might require their TAs to come from the same department, while students from the Mathematics
Department, Electrical Engineering Department, and Computer Science Department all can be TAs of
the Computer Science Department. Such constraints should be defined in the owner (object level) of

the TA roles, i.e., the individual departments.

Moreover, the importance of player-class constraints has been previously overlooked. It would be
useful for a role to access its player, e.g., by calling its method. However, type safety cannot be
guaranteed if we cannot constrain the possible types of a role player. Obviously it will be a disaster if
a method in TA calls a method defined in GradStudent but not Undergraduate, and, peter, being an
undergraduate, tries to play a role as a TA. Therefore, the player class constraint in DOOR is for the

sake of type safety rather than to increase modeling power.

Unlike most of the existing systems that have role constraints specified in object classes [13], we
have player-class constraints that can optionally be specified in the role classes so that the specification
of object class definitions is the same as that for traditional class definitions. Therefore, if roles are
never used, the definition of classes and manipulation of objects are exactly the same as traditional
class-based object-oriented systems. On the other hand, even when roles are to be used, users can never
specify the player-class constraints in all the role classes such that the role definitions are the same as
those in Fibonacci (i.e., without being concerned about whether a player is qualified to play a role), or
just specify a single class as a player-class constraint to model a unified class hierarchy as described in

[Bllngotherswordspourgapproachy (based on player-class constraints) is more general and flexible than

17

www.manaraa.com

the other existing approaches.

5. Relationships between Objects and Roles

Apart from the traditional associations (e.g., aggregation) between objects, we describe the modeling
of relationships among roles, or between objects and roles in this section. These relationships model
the dynamic relationships between entities as they evolve over time. Entities can easily gain additonal
properties or give up part of their properties by establishing these links or dropping them respectively.
Before we go on to the modeling aspect, let us describe another way to create a role. In addition to
the create role construct mentioned previously, a role can be created with the creation of an object,
or another role, by being owned by it. This can be done by specifying the keyword own before an
attribute declaration of a class definition. If the attribute is of a role class, its value (a role) will be
created automatically with an instantiation of the class. If the attribute is of an object class, an exclusive

composition [9] is assumed between the class instance and the attribute’s value.

Script 10:
(defclass object DEPARTMENT:
STRING name;

own DEPTHEAD head; Script 12:
own {FACULTY} facs; (update csd: head is ray)
) (update ray: associate 1s joe)
(defclass role DEPTHEAD played-by FACULTY:
own SECRETARY sec; Script 13:
FACULTY assoctate; (update csd:

head 1s ray;
PRE: head.associate 1s joe)

owner (self)=owner(player) A ...)

Script 14:
Script 11: (update csd:
(create DEPARTMENT csd: head is wicki)
name is "Computer Science";
head.sec is judy; ...);
)

Figure 6: Example scripts to illustrate the ownership of roles.

Suppose a department and a department head are defined for the university database (Figure 2(a))

as in Figure 6. A department 6wns a DEPTHEAD role and a set of FACULTY roles. A department head

18

www.manaraa.com

owns a SECRETARY role, and there is also an assistant (associate department head) for him/her. Then
the object csd, computer science department, is created with the department head’s secretary being
judy. Up to now, the department head is still undefined, but the department can preset some properties
for the head such that the one who picks this role up will possess these properties. In this case, judy
will be the head’s secretary regardless of whom the head will be. So after this, judy is playing a role as
a secretary of the department head. Then, in Script 12, ray becomes the head and he chooses joe as his
assistant (the object-role relationship is visualized as in Figure 7). In this case, if ray steps down later
and vicki becomes the new head, the secretary will be the same (i.e., judy) but the value of associate

will be dropped and become undefined again. So wvicki has to choose her own assistant from the faculty.

DEPTHEAD
before after
----=> FACULTY
associate
FACULTY Q .
DEPTH EAD
head .
aS)CI ate

Q FACULTY
1 FACULTY FACULTY ‘
SECRETARY
A
|

@ object —= owns TheKey

O role - plays
@ setof <> gttribution

facs

Figure 7: Object-role relationship for the computer science department.

Alternatively, the department can elect or assign joe as the associate department head by either
initializing associate as the creation of csd (same as initializing judy as the secretary), or assigning joe
as associate under the update of csd as shown in Script 13. In this case the value of associate, and
also sec, will be retained if ray abandons the role as head. Therefore, if vicki later picks this role up
and becomes the new head, she does not need to reassign these values. The department can update

associate, and preserve its value even when the player of head is no longer defined. This is because the

19

www.manaraa.com

attribute associate is of a role owned by (i.e., with the keyword own) the department. As described
previously, the definition of own is transitive. Note the difference between an attribute with a keyword
own and without. For example, judy starts playing a role as a SECRETARY after she fills the job sec of
the department, but joe does not become a FACULTY member because of being assigned as associate. In

fact, he needs to be a FACULTY member in order to be the associate department head.

A role acts as a bridge (for abstraction and information sharing) between its owner and player while
the ownership of the information is clearly defined. For example, a university can revise the salary
for department heads without knowing who the dept head of csd is, i.e., without accessing the actual
object, say joe. It updates the salary by updating csd.head.salary. This is different from and better than
having a reference pointer that points to joe, as the university can update the salary of the department
head even if the position is open (i.e., if the university does not know which object the department head
is). This models the fact that the role of a department head is actually defined by (or owned by) the

department, not by the object who is going to be the department head.

As there is no globally unique identifier for a role, it can only be referenced through the played-
by and/or owned-by links from an object. A role is identified through its role classname and value.
Therefore, polymorphism is supported. Furthermore, to solve the reference problem caused by the
object update, for example, one can refer to the department head of ¢sd through csd.head (which is a
role) instead of an object. Whenever a message is sent to it, it will be delegated to the object that is

playing the role. If no such object is playing it, an exception is raised.

Object Evolution with the Changing Object-Role Relationship We have described the use of
roles to link the relationships between objects dynamically, such that object X playing a role R owned
by object Y (through the attribute r) can extend itself with the properties of R, and other objects can
reference X through Y.r. As X keeps establishing links between different objects, and dropping some of
its connected links, its behavior will be changed (extended and contracted from time to time). Moreover,
these links (i.e., role playing) also represent the dynamic relationship between different entities. To
further explain this, consider an object John which evolves during its lifetime, as shown in Figure 8.
John first plays a role as one of the high-school students (HS-Student) of HK High School. At that time,

the dynamic (or temporary) relationship between John and HK High School is built, and John gains

20

www.manaraa.com

CSsD

HK High School Undergraduate, \
Alurmi

ol ol

HSSudentO . f:::/% Grad- N S~

_. .. acomposition/
“association relationship

Q ASUdent N
S e A N

Univ.S& T

XYZ Inc.

QO
/ K\ Manager
Cloaree

John & Partners, Inc.

?

O CEO

N Y BN \; . = NP ! \\‘//
ST N\ . N SRR Nl _ —\:':"" ’ _
p O-=5=0 O O e il
O T Caow i
Chairman
CSClub @ @ Car-C1 @ Car-C2
=
time
1920- 1931- 1938- 1944- 1963- 1991-
Creation of John becomes| | John becomes an John gets hisfirst job, John starts his Unfortunately,
object John a high-school undergraduate and asan engineer in XYZ own company John has to be
whoisa student of also aclub-member. Inc. He buys acar at the and playsarole deleted from the
Person (and HK High Afterwards he becomes sametime. After afew asthe CEO. database!
isalwaysa School. the chairman. years, he becomes a Heretires when
Person). After graduation, he manager and changes his son takes over
- continues his master his car to a better model. the company.
degreein the same
department.

Figure 8: The evolution of object John during its lifetime.

the properties of being a HS-Student pre-defined by HK High School. Afterwards, John becomes an
Undergraduate. It does not hold the properties of HS5-Student anymore, as its role for HK High School
is different. After leaving the university, John becomes an Fngineer and then a Manager of XYZ Inc.
For these two jobs, John owns the same ‘kind’ of properties and maintains the same ‘kind’ of relationship
with XYZ Inc,i.e., being an Employee of XYZ Inc. This can be indicated by the fact that both Manager
and Engineer are subclasses of Employee, and in this case they are owned by the same object. However,
there are certainly some differences between being an Engineer and being a Manager. At the end, John
retires and plays the role Retired, which defines the properties of a retired person. This role can be
played by using the constructor create role described previously. Note that when John is deleted, all

the roles being played by him and not owned by some other objects will be deleted automatically.

6. Summary

We have presented an overview of the data model, and outlined the modeling constructs and environment
of DOOR, an object-role database system. This paper has presented several novel constructs, based

onrolesytorsupportiobjectievolition, dynamic role (context-dependent) modeling, objects of multiple

21

www.manaraa.com

specific classes, and object-role relationships in object-oriented databases. The most important of them
include the player-class constraint, role playership and ownership. The player-class constraint allows
any player to play a role type-safely if they satisfy the constraint. We have pointed out the significance
of role playership and ownership. A role acts as a bridge (for abstraction and information sharing)
between its owner and player while the ownership of the information is clearly defined. Different from
other related work, objects can evolve and gain properties prescribed by the owners of roles. Moreover,
we have discussed some interesting issues which include playing multiple roles of the same type, player

change (or role migration), role ownership and playership, and player-class constraint, etc.

Our ongoing work includes the integration of the concept of composite objects with roles and further
investigation of role constraints. Meanwhile, the efficient implementation of roles is under investigation.
The first DOOR prototype is implemented using meta-object protocol in a lisp-like language, called
Scheme. Most of the runtime efficiency issues are not addressed, except the mechanisms for method
lookup and attribute name conflict resolution. We are also still testing DOOR by implementing some

non-trivial applications such as multimedia systems [21].

Acknowledgments We thank Prof. Stott Parker at UCLA for his valuable comments and provid-
ing a stimulating work environment during this work. We also thanks M. Mira da Silva at University
of Glasgow, Chih-Cheng Hsu at UCLA and Eric Lam at Hong Kong University of Science and Tech-
nology for useful comments. This research is partially supported by a research grant in Hong Kong

RGC96/97.HKUST.757/96E.

References

[1] A. Albano, R. Bergamini, G. Ghelli, and R. Orsini. An object data model with roles. In R. Agrawal, S. Baker,
and D. Bell, editors, Proceedings of the 18th International Conference on Very Large Databases, pages 39-51,
Dublin, Ireland, August 1993.

[2] A. Albano, G. Ghelli, and R. Orsini. Fibonacci: A programming language for object databases. VLDB
Journal, 4(3):403-444, 1995.

[3] E. Bertino and G. Guerrini. Objects with multiple most specific classes. In ECOOP’95 - Object-Oriented

Programmang. Springer LNCS952, 1995.

22

www.manaraa.com

[4] D.H. Fishman et al. Iris: An object-oriented database management system. ACM Trans. on Office Infor-

mation Systems, 5(1):48-69, January 1987.

[5] G. Gottlob, M. Schrefl, and B. Rock. Extending object-oriented systems with roles. ACM Transactions on

Information Systems, July 1996.

[6] G.Kappel et al. Workflow management based on objects, rules; and roles. Bulletin of the Technical Commiltee

on Data Engineering, 18(1):11-18, March 1995.

[7] M. Kifer, W. Kim, and Y. Sagiv. Querying object-oriented databases. In Proceedings of ACM-SIGMOD

International Conference on Management of Data, pages 393-402, 1992.

[8] W Kim, editor. Modern Database Systems: The Object Model, Interoperability, and Beyond. Addison-Wesley,

1995.

[9] W. Kim, E. Bertino, and J.F. Garza. Composite objects revisited. SIGMOD Record, 18(2):337-47, June

1989.

[10] W Kim and F.H. Lochovsky, editors. Objeci-Oriented Concepls, Databases, and Applications. Addison-

Wesley, 1989.

[11] H. Lieberman. Using prototypical objects to implement shared behavior in object-oriented systems. In
N. Meyrowitz, editor, Object-Oriented Programming: Systems, Languages and Applications, pages 214-223,
October 1986.

[12] M.P. Papazoglou. Roles: A methodology for representing multifaceted objects. In Proceedings of the Inter-

national Conference on Database and Fzxpert Systems Applications, pages 7T-12, 1991.

[13] B. Pernici. Objects with roles. In IEEE/ACM Conference on Office Information Systems, Cambridge, Mass.,

1990.

[14] J. Richardson and P. Schwartz. Aspects: Extending objects to support multiple, independent roles. In
ACM-SIGMOD International Conference on Management of Data, pages 298-307, Denver, Colorado, May

1991. ACM SIGMOD Record, Vol. 20.

[15] M. Schrefl and E.J. Neuhold. Object class definition by generalization using upward inheritance. In Proceed-

wngs of IEEE jth International Conference on Data Engineering, pages 4-13, 1988.
[16] E. Sciore. Object specialization. ACM Transactions on Information Systems, 7(2):103-122, April 1989.

[17] J.J. Shilling and P.F. Sweeney. Three steps to view: Extending the object-oriented paradigm. OOPSLA ’89,
ACM SIGPLAN Notices,, 24(10):353-361, October 1989.

23

www.manaraa.com

[18] L.A. Stein. Delegation is inheritance. In OOPSLA °87 Proceedings, October 1987.

[19] R.K. Wong, H.L. Chau, and F.H. Lochovsky. A data model and semantics of objects with dynamic roles.

Submaitted for publication.

[20] R.K. Wong, H.L. Chau, and F.H. Lochovsky. DOOR: A dynamic object-oriented data model with roles.
In Technology of Object-Oriented Languages and Systems (TOOLS), The 21st International Conference.

Prentice-Hall, November 1996.

[21] R.K. Wong, H.L. Chau, and F.H. Lochovsky. The roles and views of multimedia objects. In Proceedings of

the 1996 International Conference on Multi-Media Modeling. World Scientific Press, 1996.

[22] R.K. Wong and Q. Li. Manufacturing systems modeling with roles: A comprehensive approach. In IFIP
WG2.6 Sizth Working Conference on Database Semantics (DS-6), Atlanta, Georgia, USA, May 1995.

24

www.manharaa.com

